Description

The HX515060VP is a 60-watt, highly rugged, thermally enhanced, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 1.5 GHz.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, VHF TV and Aerospace applications.

•Typical Performance (On narrow band fixture with device soldered):

 $V_{DD} = 50$ Volts, $I_{DQ} = 200$ mA, CW.

Frequency	Gp (dB)	P _{out} (W)	η _D @P _{out} (%)
915 MHz	23	60	60

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118-140MHz (Avionics)
- 1200-1400MHz (L band)

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)
- 100kHz-1000MHz (ISM, instrumentation)
- 960-1215MHz (Avionics)

Table 1. Maximum Ratings

Rating	Symb	ol	Value	Unit				
DrainSource Voltage	V _{DSS}	3	+125	Vdc				
GateSource Voltage	V _{GS}		-10 to +10	Vdc				
Operating Voltage	Vdd		+55	Vdc				
Storage Temperature Range)	-65 to +150	°C				
Case Operating Temperature			+150	°C				
Operating Junction Temperature			+225	°C				
Table 2. Thermal Characteristics								
Characteristic		Symbol	Value	Unit				
Thermal Resistance, Junction to Case		Dute		2011				
T _c = 85°C, Pout=60W CW,		Rejc	1.4	°C/W				
Table 3. ESD Protection Characteristics								
Test Methodology Class								

HX515060VP

60W, 50V LDMOS Transistor

Human Body Model (per JESD22A114)	Class 2
-----------------------------------	---------

Table 4. Electrical Characteristics (TA = 25 $\,^\circ\!\mathrm{C}\,$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics	·				
Drain-Source Voltage	N/		105		M
V _{GS} =0, I _{DS} =1.0Ma	V (BR)DSS		125		v
Zero Gate Voltage Drain Leakage Current				1	μΑ
$(V_{DS} = 50V, V_{GS} = 0 V)$	IDSS				
Gate—Source Leakage Current				1	μΑ
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS				
Gate Threshold Voltage	V (4b)		2.65		V
$(V_{DS} = 50V, I_{D} = 600 \ \mu A)$	V _{GS} (th)				
Gate Quiescent Voltage			3.57		V
$(V_{DD} = 50 \text{ V}, I_D = 200 \text{ mA}, \text{Measured in Functional Test})$	V _{GS(Q)}				
Drain source on state resistance	Dda(an)		000		
(V_{DS} = 0.1V, V_{GS} = 10 V) Each section side of device measured	Rus(on)		900		11152
Common Source Input Capacitance	C _{ISS}		28.3		pF
$(V_{\text{GS}}$ = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Output Capacitance	C _{OSS}		11.9		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Feedback Capacitance	C _{RSS}		0.38		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Functional Tests (In Demo Test Fixture, 50 ohm system) V_{DD} = 50 Vdc	c, I _{DQ} = 200mA, f	= 915 MHz, C	W Signal Meas	surements, Pin	=25dBm
Power Gain@Pout	Gp		23		dB
Output Power	Pout		60		W
Drain Efficiency@Pout	ηD		60		%
Input Return Loss	IRL		-7		dB
Ruggedness at all phase angle	VSWR		10:1		

Package Outline

